
Fluigent Software Developement Kit

User Manual

Version 21.0.0.0 04/2021

Contents

1 Introduction to Fluigent SDK 5

2 Requirements 6

2.1 System requirements . 6

2.2 Supported instruments . 6

3 SDK general philosophy 7

3.1 Channels . 8

3.1.1 Unique ID . 8

3.1.2 Channel information . 9

3.1.3 Advanced features . 9

3.2 Controllers . 9

3.3 Regulation . 10

3.3.1 Custom sensor regulation . 11

3.4 Status management . 11

4 Software layers 12

4.1 Fluigent SDK native shared libraries . 12

4.2 Middleware . 13

4.3 Installation . 14

4.3.1 C++ . 14

4.3.2 C# . 15

4.3.3 Python . 15

4.3.4 LabVIEW . 16

4.3.5 MATLAB . 16

5 Fluigent SDK Functions 17

5.1 Types definition . 17

2

5.2 SDK Wrapper . 20

5.2.1 fgt_init . 20

5.2.2 fgt_close . 20

5.2.3 fgt_detect . 20

5.2.4 fgt_initEx . 21

5.2.5 fgt_get_controllersInfo . 21

5.2.6 fgt_get_pressureChannelCount . 21

5.2.7 fgt_get_sensorChannelCount . 22

5.2.8 fgt_get_TtlChannelCount . 22

5.2.9 fgt_get_valveChannelCount . 22

5.2.10 fgt_get_pressureChannelsInfo . 22

5.2.11 fgt_get_sensorChannelsInfo . 24

5.2.12 fgt_get_TtlChannelsInfo . 24

5.2.13 fgt_get_valveChannelsInfo . 24

5.2.14 fgt_set_pressure . 25

5.2.15 fgt_get_pressure . 25

5.2.16 fgt_get_pressureEx . 26

5.2.17 fgt_set_sensorRegulation . 26

5.2.18 fgt_get_sensorValue . 26

5.2.19 fgt_get_sensorValueEx . 28

5.2.20 fgt_get_valvePosition . 28

5.2.21 fgt_set_valvePosition . 28

5.2.22 fgt_set_allValves . 29

5.2.23 fgt_set_sessionPressureUnit . 29

5.2.24 fgt_set_pressureUnit . 29

5.2.25 fgt_get_pressureUnit . 30

5.2.26 fgt_set_sensorUnit . 30

5.2.27 fgt_get_sensorUnit . 30

5.2.28 fgt_set_sensorCalibration . 31

5.2.29 fgt_get_sensorCalibration . 31

5.2.30 fgt_set_sensorCustomScale . 31

5.2.31 fgt_set_sensorCustomScaleEx . 32

5.2.32 fgt_calibratePressure . 32

3

5.2.33 fgt_set_customSensorRegulation . 32

5.2.34 fgt_get_pressureRange . 33

5.2.35 fgt_get_sensorRange . 33

5.2.36 fgt_get_valveRange . 33

5.2.37 fgt_set_pressureLimit . 35

5.2.38 fgt_set_sensorRegulationResponse . 36

5.2.39 fgt_set_pressureResponse . 36

5.2.40 fgt_get_pressureStatus . 37

5.2.41 fgt_get_sensorStatus . 37

5.2.42 fgt_set_power . 38

5.2.43 fgt_get_power . 38

5.2.44 fgt_set_TtlMode . 39

5.2.45 fgt_read_Ttl . 39

5.2.46 fgt_trigger_Ttl . 39

5.2.47 fgt_set_purge . 40

5.2.48 fgt_set_manual . 40

5.3 Type equivalence . 41

6 Examples 42

6.1 Basic Read Sensor Data . 42

6.2 Basic Set Pressure . 42

6.3 Basic Sensor Regulation . 43

6.4 Basic Set Valve Position . 43

6.5 Basic Get Instruments Info . 43

6.6 Advanced Specific Multiple Instruments . 43

6.7 Advanced Parallel Pressure Control . 44

6.8 Advanced Features . 44

6.9 Advanced Custom Sensor Regulation . 44

4

1 | Introduction to Fluigent SDK

Fluigent Software Development Kit (SDK) allows you to fully integrate Fluigent devices in your application;
it has been declined in several languages, among the most popular ones in the instrumentation field (e.g.
LabVIEW, C++, C#.NET, Python. . .).

The aim of this document is to introduce the SDK’s exposed functions which can be used to interact with
your Fluigent instruments.

This SDK regroups all Fluigent pressure and sensor instruments as well as an advanced regulation loop.
You can still use independent SDK (MFCS, FRP, LineUP) for basic hardware set-ups or for specific software
requirements.

Main advantages of using this SDK:

• all Fluigent instruments (pressure and sensor) are managed by one instance (instead of one instance
per intrument type)

• if hardware is changed in many cases software code does not need to be adapted

• embedded regulation allow powerful and custom loop feedback between any pressure and sensor

• custom sensors (other than Fluigent ones) can also be pressure regulated

• features such as limits, units, calibration and detailed errors allow advanced functionalities

5

2 | Requirements

2.1 System requirements

The Fluigent SDK can run on the following systems:

Operating system x86 (32 bits) x64 (64 bits)

Windows 7, 8, 8.1, 10 X X

Linux 2.6.39 and later X

macOS X

2.2 Supported instruments

By using Fluigent SDK, you have direct access to following Fluigent devices:

• MFCS™ Series: MFCS™, MFCS™-EZ, MFCS™-EX and PX pressure controllers

• LineUP Series: Link, Flow EZ™ pressure controller, flow-units XS, S, M, L and XL connected to Flow
EZ™, Switch EZ module with ESS switches (M-Switch, L-Switch and Two-Switch) and P-Switch module

• Flowboard: XS, S, M, L and XL Flow Units

• Inline Pressure Sensor (Pressure Unit) S, M and XL

• Switchboard with ESS switches (M-Switch, L-Switch and Two-Switch)

6

3 | SDK general philosophy

The Fluigent SDK gives access to all supported Fluigent instruments, as listed in 2.2. The instruments are
sorted into categories according to the functionalities they support, and those functionalities are accessed via
specific functions.

All instruments are divided into two main topics:

• channels: units that are controllable independently

• controllers: instruments that provide an interface between one or more channels and the computer

The default initialization order is as listed in 2.2. If multiple instruments of same type are connected, they
are sorted by their serial number in ascending order.

The following image shows an example of channels and controllers in their default initialization order:

Figure 3.1: Default controllers and channel sorting

In this example there is a total of 6 pressure channels, 3 sensors (flow-units), 2 TTL channels (BNC ports)
for 3 main controllers (MFCS-EZ, FRP and Link). This indexing is then used when calling related functions.
For example: setting pressure on first FlowEZ will use index 4.

This is the default indexing if the instruments are initialized using fgt_init. By using fgt_initEx instead,
instruments can be initialized in a different order if needed.

For example, if in Figure 3.1 the MFCS-EZ serial number is 567, the Flowboard 800 and the Link 11023,
and you want LineUP instruments to appear first on the channel indexing, call fgt_initEx with [11023, 567, 800]
in the array. Setting pressure on first Flow EZ will then use index 0 (instead of 4 by default).

7

3.1 Channels

The Fluigent SDK supports the following types of instrument channels:

• pressure controller (from MFCS™ Series or LineUP Series)

• sensor (Flow Unit and Inline Pressure Sensor)

• TTL 0-5V input/output ports (from Link, LineUP Series)

• valve ESS and LineUP valves (M-Switch, L-Switch, Two-Switch and P-Switch)

Each channel type has its own indexing starting from 0 and a dedicated set of functions that give access
to the channel’s functionalities. The functions take as argument the channel index within the list of channels of
the same type. So, for example, fgt_get_pressure(0) returns the pressure on the first pressure channel, and
fgt_get_valvePosition(0) returns the current position of the first valve channel.

3.1.1 Unique ID

Unique identification is an unique number which can be used to identify a specific channel. This can be
useful when set-up changes avoiding new indexing. However this unique ID is not versatile, if an instrument is
replaced, software code has to be adapted. Following image shows how unique ID is computed.

Figure 3.2: Unique channel ID format

Here is an example of a MFCS-EZ SN 567, first pressure channel ID:

Figure 3.3: Example of MFCS-EZ pressure channel ID

Unique ID value can be computed by hand or retried using channel information dedicated function.

8

3.1.2 Channel information

Detailed information about each channel (pressure, sensor and TTL) can be retrieved. It concerns con-
troller serial number, device serial number, firmware, position (index from controller), unique ID and instrument
type. Sensor has an additional field: it’s type.

There are three dedicated functions for each channel type: fgt_get_pressureChannelsInfo,
fgt_get_sensorChannelsInfo and fgt_get_TtlChannelsInfo. Returned parameter is a structure of elements.

Some channels do not have a dedicated serial number or firmware, in this case returned value is 0.

3.1.3 Advanced features

More than setting\reading pressure and sensor some advanced features are also available in order to
ease SDK usage and integration.

A pressure limit can be set on each pressure channel. When setting a limit, instrument will never apply
an order over this value. Aim is to protect microfluidic device (chips, valves, cell stretching...). When closed
loop regulation is running, limit is also taken into account. Minimal and maximal value can be set using
fgt_set_pressureLimit function.

Default unit used by pressure channels is mbar and µl/min for sensor flowrate channels. Unit can be
changed, then all related functions is using it. A large choice of units are accepted, moreover non SI ones are
also accepted such as ul per hour, nL/second... If wrong unit is send or if it is invalid an error is returned.

When working with liquids that have different properties from water and isopropyl alcohol such as some
fluorinated oils a polynomial function can be used to adjust the flow rate measurements. Scale factor is applied
using following formula:

scaled_value = a ∗ sensor_value+ b ∗ sensor_value2 + c ∗ sensor_value3 (3.1)

When applying a scale factor, sensor range is also changed and can fast reach big values. In order to limit
sensor in the experimental range fgt_set_sensorCustomScaleEx can be used.

3.2 Controllers

Fluigent instrument controllers are the devices that connect directly to the computer:

• MFCS™ Series: MFCS™, MFCS™-EZ, MFCS™-EX and PX pressure controllers

• Flowboard

• LineUP Series: Link

• IPS (if used as a stand-alone sensor)

• Switchboard

Instruments are initialized when calling fgt_init or fgt_initEx. However directly calling any function auto-
matically initializes the session. By default, instruments are sorted by their type then by their serial number in
ascending order. The order of the types is as listed above and in fgt_INSTRUMENT_TYPE.

Initialization order also defines channel indexing 3.1. To initialize controllers in a specific order, call
fgt_initEx, passing their serial numbers in the desired order.

Like channels, controllers also have a unique ID. It can be used to access the same instrument in different
sessions, even if other instruments are present. Call fgt_get_controllersInfo to obtain the unique IDs of the
initialized controllers, as well as their serial numbers, types and firmware versions (if available).

Before exiting your application, call fgt_close to close the SDK session. This frees the allocated memory
and ensures that running threads are stopped properly. If this function is not called, the host application might
throw an exception when exiting.

9

3.3 Regulation

Fluigent SDK embeds sensor regulation which automatically adjust pressure in order to reach sensor
setpoint value.

Figure 3.4: Sensor regulation feedback loop

Regulation can be started by calling fgt_set_sensorRegulation function. It links a pressure source to
a sensor (basically a flow-unit). When running, sensor value is read then an algorithm computes required
pressure command in order to reach sensor setpoint and a pressure controller applies this value. Regulation
uses a sensor and a pressure channel (identified by their index or unique ID), multiples instances can be
launched by calling same function with different index. Pressure controller or sensor can be changed on the
run, without need of start/stop process. Note that regulation using Inline Pressure Sensor is not supported.

The feedback loop is a “self-learning” algorithm to overcome typical issues in microfluidic flow rate control
such as calibration, multi-channel interactions and resistance changes during experiments. Algorithm will adapt
to any case and try to apply best pressure profile. If conditions are not optimal or if pressure controller range is
not high enough to reach sensor setpoint, detailed information can retrieved when calling fgt_get_sensorStatus
function. infoCode parameter is dedicated to regulation status, it is a mask of 8 bits:

infoCode Description

0x00 No regulation is running on this sensor
0x01 Regulation is running in nominal state
0x02 Invalid microfuidic set-up
0x04 Low fluidic resistance
0x08 High fluidic resistance
0x10 Pressure limit reached
0x20 Flow-Rate limit reached
0x40 Command is not achievable
0x80 Reservoir may be empty

Microfluidic set-up, especially sensor sense has to be considered. Algorithm logic expects that sensor
sense points out from the reservoir. In most cases, sensor sense has to be positive when fluid is going out of
the reservoir. There is an exception on vacuum MFCS™ Series instruments, sensor sense has to be inverted
from nominal case: sensor has to point towards the reservoir.

In order to stop a running regulation send a pressure order on regulated pressure channel. When exiting
(by calling fgt_close function) regulation is also stopped.

10

3.3.1 Custom sensor regulation

Custom sensors, other than Fluigent ones can be used for pressure feedback loop regulation. It uses
same algorithm than flow-rate regulation but can be used with different kind of sensors (pressure, liquid level,
light...). Algorithm will try to adjust a Fluigent pressure controller in order to reach custom sensor setpoint.

fgt_set_customSensorRegulation function is dedicated to this purpose. It requires 4 parameters: custom
sensor read value, setpoint, sensor maximum range and used pressure channel. Function has to be called
at 1Hz or higher rate otherwise regulation is stopped. In this case data is considered not enough accurate to
sustain a stable regulation.

There is no security on this feature and we do not guarantee full compatibility with used sensor.

3.4 Status management

When called, each function returns a status code. It is a byte casted in fgt_ERROR_CODE enum. If
command was properly executed 0 value (Ok) is returned, otherwise a value indicates error status.

Pressure and sensor have dedicated advanced status functions:

• fgt_get_pressureStatus

• fgt_get_sensorStatus

In addition to error code, channel type, controller serial number, an information code and a detailed mes-
sage are returned. This allow a detailed troubleshooting and display of custom messages.

Dll wrapper implements three status display functions:

• fgt_Manage_Pressure_Status

• fgt_Manage_Sensor_Status

• fgt_Manage_Generic_Status

You can decide a different action or different message display by modifying those functions.

11

4 | Software layers

The Fluigent SDK is based on a set of native libraries for each operating system. These libraries handle
low-level communication with the supported instruments. Calling the native libraries directly is possible, but is
recommended only for advanced users who are proficient in C or C++. When using the native libraries directly,
the function signatures and descriptions can be found in the accompanying fgt_SDK.h header file. The same
header file can be used for all versions of the library.

Additionally, more friendly packages and examples are provided for five major programming languages:
C++, C#, Python, LabVIEW and MATLAB. They are collectively referred to as Middleware in this manual.

We strongly recommend using the Middleware if your programming language of choice is supported. It is
open source, so you can modify it to suit your needs.

4.1 Fluigent SDK native shared libraries

The native shared libraries are sorted into folders by the operating system and processor architecture they
target:

• windows/

– x86/

* fgt_SDK.dll

– x64/

* fgt_SDK.dll

• linux/

– x64/

* libfgt_SDK.so

* libfgt_SDK.so.21

* libfgt_SDK.so.21.0.0

• mac/

– x64/

* libfgt_SDK.dylib

* libfgt_SDK.21.dylib

* libfgt_SDK.21.0.0.dylib

• fgt_SDK_32.dll

• fgt_SDK_64.dll

• fgt_SDK.h

12

Currently, only the x86 (32 bits) and the x64 (64 bits) processor architectures are supported. They the
most common architectures for desktop computers with Intel and AMD processors.

Note that the fgt_SDK_32.dll and fgt_SDK_64.dll files are the same as the files in the windows/x86 and
windows/x64 folders, respectively. They are copied for the sake of backwards compatibility and because this
naming convention is more convenient for some programming languages, such as LabVIEW.

When targeting a single platform, you can keep only the corresponding library. To target multiple platforms,
you have to write the logic to identify the platform and select the appropriate library to load. See the Middleware
source code for examples on how to do that.

The shared libraries use the default calling convention for each operating system and architecture. In
particular, __stdcall is used on Windows x86 (32 bits). On other systems, there is generally no need to specify
the calling convention. Any language that interfaces with C should be able to access the library functions, as
demonstrated in the Middleware source code.

The library functions are generally non-blocking and return immediately, with the exception of the functions
that explicitly wait for the instruments, such as fgt_init and fgt_set_valvePosition when the "wait" parameter is
set to true. Some functions can also become blocking if they are called too frequently compared to the data
exchange rate with the instruments.

The data refresh rate varies between the instrument families:

• MFCS™, FRP™, ESS™: 100ms

• LineUP™: 20ms

• IPS: 10ms

These values represent expected response time both when reading and when setting values on the instru-
ment. Calling "get" functions more frequently than these delays will simply return the same value repeatedly
until it is updated by the instrument. Calling "set" functions more frequently might cause the library to block
while it waits for the instrument to process the commands.

4.2 Middleware

The SDK middleware is a set of packages that make it easier to use the SDK with various programming
languages.

The following programming languages and environments are supported:

Language Package Windows Linux macOS

C++ fgt_SDK_Cpp.cpp middleware file
fgt_SDK_Cpp.sln Visual Studio complete solution
containing middleware and examples

X

C# fgt_SDK.cs middleware file
fgt_SDK.sln Visual Studio complete solution con-
taining middleware and examples

X X X

Python Fluigent.SDK package
pip installer package

X X X

LabVIEW VIPM toolkit installer package X

MATLAB Toolbox installer package X

13

The middleware packages provide the following functionalities for your convenience:

• Identify, locate and load the appropriate SDK native library according to the platform

• Convert data types to the native types used by each language to keep the user code clean

• Handle errors and display formatted error messages in program output

The middleware matches the conventions of each programming language while keeping the interface as
similar as possible across all supported languages.

The following sections contain installation and usage instructions for each language.

4.3 Installation

The Fluigent SDK is available as a GitHub repository at https://github.com/Fluigent/fgt-SDK. The
repository itself contains the source code of the Middleware, and the Releases page contains the compiled
packages.

Feel free to open issues in the repository to give feedback, report problems, request features or ask for
help. Please note that the repository issues are public. Do not include sensitive information in the issues.
If your request must contain sensitive information, please send it to us directly using the contact information
provided at the end of this manual.

On Windows, the SDK can also be installed via the Fluigent Software Installer wizard, available at https:
//www.fluigent.com/download/. It copies the packages and examples to C:\Program Files (x86)\Fluigent\
SDK\ as read-only. You can then copy or install the packages from this location, as explained in the following
sections.

On Linux, the system usually does not allow access to peripheral devices without superuser rights. It is
possible to make an exception for Fluigent instruments, so the SDK can detect and communicate with them
when run by a normal user. You can run the script linux-udev.sh that we provide, which automatically makes
the necessary changes to the system. The script must be run with superuser rights.

4.3.1 C++

The C++ middleware consists of a CMake project that declares an interface library fgt_SDK_Cpp contain-
ing the SDK and the necessary logic to build on all supported operating systems. Linking your project against
this library will give you access to the SDK functions and types. Examples are also included to demonstrate
both the project creation with CMake and the SDK features.

The CMake project is compatible with Visual Studio 2019 on Windows. Please read the Readme.md file
in the C++ directory for instructions on how to build the project from the command line and from various IDEs.

Language specifics:

• The middleware function names are capitalized (e.g. Fgt_init() instead of fgt_init()) to avoid name colli-
sions with the shared library functions that are included in the namespace. You can also call the shared
library directly if you prefer.

• enum types are displayed as string by overriding « std::ostream operator

• The middleware calls functions such as Fgt_Manage_Pressure_Status after every function call, to report
errors. By default, they print error messages and context (e.g. instrument type and index) to the console.
You can modify these functions if you want a different form of error handling. The error code is also
returned by the function.

• A post-build command is available to copy the appropriate shared library to the output directory, so the
executable can find it. This is demonstrated in the examples.

14

https://github.com/Fluigent/fgt-SDK
https://www.fluigent.com/download/
https://www.fluigent.com/download/

4.3.2 C#

The C# middleware consists of a Visual Studio solution (fgt_sdk_csharp.sln) containing:

• a .NET Core 3.1 middleware fgt_SDK_Cpp.csproj project file

• several .NET Core examples, in the form of projects, demonstrating from basic to advanced features

You can add the middleware project to your own solution and reference it to have access to the SDK
functions. When you build your project, the middleware copies the necessary native shared libraries to the
output directory, so you can deploy them with your application. The middleware assembly is compatible with
.NET Core 3.1 and .NET 5 and later.

A NuGet package is also provided. It is built from the middleware project mentioned above. The package
is currently not available on any online package managers, but you can create a local feed to use it by following
the instructions on https://docs.microsoft.com/en-us/nuget/hosting-packages/local-feeds.

Language specifics:

• one method manages low level returned codes. It is private to fgtSdk class: ErrCheck. You may want to
change its behavior in order to throw exceptions that you can catch in your business layer

4.3.3 Python

The Python package is provided as a .zip file that can be installed using the pip or easy_install modules.
This package can be installed in all supported operating systems and includes the necessary shared libraries.

python -m pip install -user fluigent_sdk -21.0.0. zip

python -m easy_install -user fluigent_sdk -21.0.0. zip

The –user option causes the package to be installed in the user’s home directory, so that only the current
user has access to it. In that case the installation does not require superuser rights. If the option is not used,
the package will be installed in the system directory and all users will have access to it, and the installation will
require superuser rights.

If you wish to bundle the package into your project instead of installing it, extract the .zip file and place the
Fluigent folder in your project directory. As long as you work from that directory, the package will be available
as if it were installed. This is convenient for redistributing projects that use the SDK.

To install the Python package on Windows, you can also use the MSI or EXE installer. Run the 32 or 64-bit
installer according to your version of Windows (and not to your version of Python). If you have more than one
version of Python, the installer will ask which one you wish to install the package for. You might have to insert
the path to your Python installation manually if it is not detected automatically.

Language specifics:

• The functions are located in the Fluigent.SDK module, as shown in the examples. They have the same
name as the corresponding native library functions, but they return data by value (as a tuple if there is
more than one value), instead of returning by reference like the C API.

• The “extended” functions (e.g. fgt_get_pressureEx) have been merged with the corresponding regular
functions through the use of default arguments. Read the function docstrings for details.

• functions that return values (such as the functions starting with fgt_get_*) do not return the error code
by default, to keep the user code more simple. They can be made to return the error code by setting the
optional paramter get_error to True, in which case the functions will return a tuple with the error code as
the first element.

• The Fluigent.SDK.exceptions module defines how the DLL error codes are handled. The default behavior
is to log warning messages when errors occur. If you wish to change this behavior (e.g., raise excep-
tions for certain error codes), you can patch the functions inside this module, either at run time in your
application or by editing the exceptions.py file.

15

https://docs.microsoft.com/en-us/nuget/hosting-packages/local-feeds

4.3.4 LabVIEW

LabVIEW toolkit is only supported on Windows operating. It supports both 32 and 64 bit versions of
LabVIEW starting with 2016 edition.

fgt_SDK toolkit for LabVIEW was built using JKI VI Package Manager (VIPM) software. JKI VIPM Free
Edition can be downloaded from http://jki.net/vipm. 2016 or higher version is required to install the package. In
order to install the toolkit open or double click the VI Package (.vip) file. Select the LabVIEW version to install
the palette in at the top of the VIPM window. Click the install (or upgrade) button and follow the wizard.

You can also clone the repository and use the code directly, by opening the LabVIEW project file in Lab-
VIEW 2016 or higher.

Language specificities:

• error handling is automatically called each time a VI of the wrapper is called. Error numbers are copied
from low level dlls call; you may want to change this behavior by modifying ErrorCodeToErrorStringCon-
verter.vi in order to apply an offset on error codes

4.3.5 MATLAB

To install the toolbox, open the toolbox installer file “Fluigent SDK.mltbx”. Fluigent toolbox is compatible
with MATLAB R2015a and higher. Please contact us if you are using previous MATLAB versions. As mentioned
at the start of this chapter, the MATLAB toolbox can only be used in the Windows operating system.

After the Toolbox installation is complete, all functions are available directly in the command window and
scripts. The help and doc commands also work normally. You can also access the complete documentation in
the Help menu (F1 keyboard shortcut). The documentation also includes examples that you can run and edit.
Type doc Fluigent to open the list of toolbox functions and enumeration types.

Language specifics:

• The “extended” functions (e.g. fgt_get_pressureEx) have been merged with the corresponding regular
functions through the use of MATLAB’s varargin and varargout arguments. Read the function documen-
tation for details on how to call each version of the function.

• the functions manage_generic_status, manage_pressure_status and manage_sensor_status define how
the DLL error codes are handled. The default behavior is to generate warning messages when errors
occur. If you wish to change this behavior (e.g., throw exceptions for certain error codes), you can do so
by editing these functions. They are located in the Fluigent folder, along with the other SDK functions.

• most functions will return the error code returned by the shared library as the last returned value. See
the function help for examples.

16

5 | Fluigent SDK Functions

5.1 Types definition

1. fgt_ERROR_CODE

Returned status code when calling a function.

Value Enum Description

0 OK No error
1 USB_error USB communication error
2 Wrong_command Wrong command was sent
3 No_module_at_index There is no module initialized at selected index
4 Wrong_module Wrong module was selected, unavailable feature
5 Module_is_sleep Module is in sleep mode, orders are not taken into ac-

count
6 Master_error Controller error
7 Failed_init_all_instr Some instruments failed to initialize
8 Wrong_parameter Function parameter is not correct or out of the bounds
9 Overpressure Pressure module is in overpressure protection
10 Underpressure Pressure module is in underpressure protection
11 No_instr_found No Fluigent instrument was found
12 No_modules_found No Fluigent pressure controller was found
13 No_pressure_controller_found No Fluigent pressure controller was found
14 Calibrating Pressure or sensor module is calibrating, read value may

be incorrect
15 Dll_dependency_error Some dependencies are not found
16 Processing M-Switch is still rotating

2. fgt_INSTRUMENT_TYPE

Type of available instruments.

Value Enum Description

0 None None
1 MFCS MFCS™ series instrument
2 MFCS_EZ MFCS™-EZ instrument
3 FRP Flowboard instrument
4 LineUP LineUp series instrument (Link, Flow EZ)
5 IPS Inline Pressure Sensor modules
6 ESS Switchboard instrument

17

3. fgt_SENSOR_TYPE

Type of available sensors.

Value Enum Description

0 None None
1 Flow_XS_single XS flow-unit, H2O calibration
2 Flow_S_single S flow-unit, H2O calibration
3 Flow_S_dual S flow-unit, dual calibration H2O and IPA
4 Flow_M_single M flow-unit, H2O calibration
5 Flow_M_dual M flow-unit, dual calibration H2O and IPA.

On FlowEZ also accepts HFE, FC40 and OIL
6 Flow_L_single L flow-unit, H2O calibration
7 Flow_L_dual L flow-unit, dual calibration H2O and IPA
8 Flow_XL_single XL flow-unit, H2O calibration
9 Pressure_S Inline Pressure Sensor range S
10 Pressure_M Inline Pressure Sensor range M
11 Pressure_XL Inline Pressure Sensor range XL

4. fgt_SENSOR_CALIBRATION

Sensor available calibration table.

Value Enum Description

0 None None
1 H2O Water
2 IPA Isopropanol
3 HFE Hydrofluoroether
4 FC40 Fluorent electronic liquid
5 OIL Oil

5. fgt_POWER

Power state of the device.

Value Enum Description

0 POWER_OFF Device is powered off
1 POWER_ON Device is powered on
2 SLEEP Device is in sleep mode

6. fgt_TTL_MODE

TTL mode is used for TTL ports configuration. TTL low output is at 0V and high output at 5V. Ports can
be configured as input or output (signal generator).

Value Enum Description

0 DETECT_RISING_EDGE Detect a rising edge input signal
1 DETECT_FALLING_EDGE Detect a falling edge input signal
2 OUTPUT_PULSE_LOW Generate a low pulse for 100ms
3 OUTPUT_PULSE_HIGH Generate a high pulse for 100ms

18

7. fgt_VALVE_TYPE

Type of available valves.

Value Enum Description

0 None None
1 MSwitch M-Switch, 11/10 rotating valve
2 TwoSwitch Two-Switch, 3/2 valve
3 LSwitch L-Switch, 6/2 rotating valve
4 PSwitch LineUP P-Switch, pressure toggle

8. fgt_VALVE_TYPE

Switch direction for M-Switches

Value Enum Description

0 Shortest Direction of the shortest path
1 Anticlockwise Always decrease the position
2 Clockwise Always increase the position

9. fgt_CHANNEL_INFO

This structure contains pressure and sensor identification and details.

Name Data type Description

ControllerSN unsigned short Serial number of this channel’s controller
firmware unsigned short Firmware version of this channel (0 if not applicable)
DeviceSN unsigned short Serial number of this channel (0 if not applicable)
position unsigned int Position on controller
index unsigned int Channel index within its physical quantities family
indexID unsigned int Unique channel identifier
InstrType fgt_INSTRUMENT_TYPE Type of the instrument

10. fgt_CONTROLLER_INFO

This structure contains controller identification and details.

Name Data type Description

SN unsigned short Controller serial number
Firmware unsigned short Controller firmware version
id unsigned int Index
InstrType fgt_INSTRUMENT_TYPE Type of the instrument

19

5.2 SDK Wrapper

Initialization and close

5.2.1 fgt_init

fgt_ERROR_CODE fgt_init(void);

Initialize or reinitialize (if already opened) Fluigent SDK instance. All detected Fluigent instruments (MFCS,
MFCS-EZ, FRP, LineUP, IPS) are initialized. This function is optional, directly calling a function will
automatically create the instance. Only one instance can be opened at once. If called again, session is
reinitialized.

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.2 fgt_close

fgt_ERROR_CODE fgt_close(void);

Close communication with Fluigent instruments and free memory. This function is mandatory, if not called the
dll will generate an exception when exiting your application. Using this function will remove session
preferences such as units and limits. If any regulation is running it will stop pressure control.

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.3 fgt_detect

unsigned char fgt_detect(unsigned short SN[256] , fgt_INSTRUMENT_TYPE type [256]);

Detects all connected Fluigent instrument(s), return their serial number and type.

Output

SN[256] unsigned short Array of controllers serial number. This is a
256 pre-allocated table tailed with 0’s when
no instrument

type[256] fgt_INSTRUMENT_TYPE This is a 256 pre-allocated table tailed with
’None’ value when no instrument

Returns

return unsigned char Total number of detected instruments

20

5.2.4 fgt_initEx

unsigned char fgt_initEx(unsigned short SN [256]);

Initialize specific Fluigent instrument(s) from their unique serial number. This function can be used when
multiple instruments are connected in order to select your device(s).

Output

SN[256] unsigned short Array of controllers serial numbers to be ini-
tialized.
Fill with 0’s if for no instrument .

Returns

fgt_ERROR_CODE enum Returned status of function execution.

Channels information

5.2.5 fgt_get_controllersInfo

fgt_ERROR_CODE fgt_get_controllersInfo(fgt_CONTROLLER_INFO info [256]);

Retrieve information about session controllers. Controllers are MFCS, Flowboard, Link, IPS in an array.

Output

info[256] fgt_CONTROLLER_INFO Array of structure containing information
about each initialized controller.
See details of fgt_CONTROLLER_INFO.

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.6 fgt_get_pressureChannelCount

fgt_ERROR_CODE fgt_get_pressureChannelCount(unsigned char* nbPChan);

Get total number of initialized pressure channels. It is the sum of all MFCS, MFCS-EZ and FlowEZ pressure
controllers.

Output

nbPChan unsigned char Total number of initialized pressure channels

Returns

fgt_ERROR_CODE enum Returned status of function execution.

21

5.2.7 fgt_get_sensorChannelCount

fgt_ERROR_CODE fgt_get_sensorChannelCount(unsigned char* nbSChan);

Get total number of initialized sensor channels. It is the sum of all connected flow-units on Flowboard and
FlowEZ, and IPS sensors.

Output

nbSChan unsigned char Total number of initialized sensor channels

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.8 fgt_get_TtlChannelCount

fgt_ERROR_CODE fgt_get_TtlChannelCount(unsigned char* nbTtlChan);

Get total number of initialized sensor channels. It is the sum of all connected flow-units on Flowboard and
FlowEZ.

Output

nbTtlChan unsigned char Total number of initialized TTL channels

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.9 fgt_get_valveChannelCount

fgt_ERROR_CODE fgt_get_valveChannelCount(unsigned char* nbValveChan);

Get total number of initialized valve channels. It is the sum of all connected Two-Switch, L-Switch and
M-Switch valves connected to Switchboard or Switch EZ devices, as well as individual P-Switch outputs (8
per device).

Output

nbValveChan unsigned char Total number of initialized valve channels

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.10 fgt_get_pressureChannelsInfo

fgt_ERROR_CODE fgt_get_pressureChannelsInfo(fgt_CHANNEL_INFO info [256]);

Retrieve information about each initialized pressure channel. This function is useful in order to get channels
order, controller, unique ID and instrument type. By default this array is built with MFCS first, MFCS-EZ
second and FlowEZ last. If only one instrument is used, index is the default channel indexing starting at 0.
You can initialize instruments in specific order using fgt_initEx function.

22

Output

info[256] fgt_CHANNEL_INFO Array of structure containing channel details

Returns

fgt_ERROR_CODE enum Returned status of function execution.

23

5.2.11 fgt_get_sensorChannelsInfo

fgt_ERROR_CODE fgt_get_sensorChannelsInfo(fgt_CHANNEL_INFO info [256] ,

fgt_SENSOR_TYPE sensorType [256]);

Retrieve information about each initialized sensor channel. This function is useful in order to get channels
order, controller, unique ID and instrument type. By default this array is built with FRP Flow Units first,
followed by Flow EZ Flow Units, followed by IPS modules. If only one instrument is used, index is the default
channel indexing starting at 0. You can initialize instruments in specific order using fgt_initEx function.

Output

info[256] fgt_CHANNEL_INFO Array of structure containing channel details
sensorType[256] fgt_SENSOR_TYPE Array containing sensor types

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.12 fgt_get_TtlChannelsInfo

fgt_ERROR_CODE fgt_get_TtlChannelsInfo(fgt_CHANNEL_INFO info [256]);

Retrieve information about each initialized TTL channel. This function is useful in order to get channels order,
controller, unique ID and instrument type. TTL channels are only available for LineUP Series, 2 ports for each
connected Link.

Output

info[256] fgt_CHANNEL_INFO Array of structure containing channel details

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.13 fgt_get_valveChannelsInfo

fgt_ERROR_CODE fgt_get_valveChannelsInfo(fgt_CHANNEL_INFO info [256] ,

fgt_valve_t valveType [256]);

Retrieve information about each initialized valve channel. This function is useful in order to get channels order,
controller, unique ID and instrument type. By default this array is built with LineUp valves first (connected to
SwitchEz or P-Switch) followed by ESS Switchboard valves. If only one instrument is used, index is the
default channel indexing starting at 0. You can initialize instruments in specific order using fgt_initEx function.

Output

info[256] fgt_CHANNEL_INFO Array of structure containing channel details
valveType[256] fgt_VALVE_TYPE Array containing valve types

Returns

fgt_ERROR_CODE enum Returned status of function execution.

24

Basic functions

5.2.14 fgt_set_pressure

fgt_ERROR_CODE fgt_set_pressure(unsigned int pressureIndex , float pressure);

Send pressure command to selected device.

Parameters

pressureIndex unsigned int Index of pressure channel or unique ID
pressure float Pressure order in selected unit, default is

"mbar"

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.15 fgt_get_pressure

fgt_ERROR_CODE fgt_get_pressure(unsigned int pressureIndex , float *pressure);

Read pressure value of selected device.

Parameter

pressureIndex unsigned int Index of pressure channel or unique ID

Output

pressure float Read pressure value in selected unit, default
is "mbar"

Returns

fgt_ERROR_CODE enum Returned status of function execution.

25

5.2.16 fgt_get_pressureEx

fgt_ERROR_CODE fgt_get_pressureEx(unsigned int pressureIndex , float *pressure ,

unsigned short *timeStamp);

Read pressure value and time stamp of selected device. Time stamp is the device internal timer.

Parameter

pressureIndex unsigned int Index of pressure channel or unique ID

Output

pressure float Read pressure value in selected unit, default
is "mbar"

timeStamp unsigned short Hardware timer in ms

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.17 fgt_set_sensorRegulation

fgt_ERROR_CODE fgt_set_sensorRegulation(unsigned int sensorIndex , unsigned int

pressureIndex , float setpoint);

Start closed loop regulation between a sensor and a pressure controller. Pressure will be regulated in order to
reach sensor setpoint. Call again this function in order to change the setpoint. Calling fgt_set_pressure on
same pressureIndex will stop regulation. Not supported by the IPS

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
pressureIndex unsigned int Index of pressure channel or unique ID
setpoint float Regulation value to be reached in selected

unit, default is "µl/min" for flowrate sensors

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.18 fgt_get_sensorValue

fgt_ERROR_CODE fgt_get_sensorValue(unsigned int sensorIndex , float *value);

Read sensor value of selected device.

Parameter

sensorIndex unsigned int sensorIndex Index of sensor channel or
unique ID

Output

value float Read sensor value in selected unit, default is
"µl/min" for flowrate sensors and "mbar" for
pressure sensors

26

Returns

fgt_ERROR_CODE enum Returned status of function execution.

27

5.2.19 fgt_get_sensorValueEx

fgt_ERROR_CODE fgt_get_sensorValueEx(unsigned int sensorIndex , float* value ,

unsigned short* timeStamp);

Read sensor value and timestamp of selected device. Time stamp is the device internal timer.

Parameter

sensorIndex unsigned int Index of sensor channel or unique ID

Output

value float Read sensor value in selected unit, default is
"µl/min" for flowrate sensors

timeStamp unsigned short Hardware timer in ms

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.20 fgt_get_valvePosition

fgt_ERROR_CODE fgt_get_valvePosition(unsigned int valveIndex , int*

position);

Read the position of a specific valve channel.

Parameter

valveIndex unsigned int Index of valve channel or unique ID

Output

position int Current position of the valve

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.21 fgt_set_valvePosition

fgt_ERROR_CODE fgt_set_valvePosition(unsigned int valveIndex , int

position , fgt_SWITCH_DIRECTION direction , int wait);

Set the position of a specific valve channel.

Parameters

valveIndex unsigned int Index of valve channel or unique ID
position int Desired valve position
direction fgt_SWITCH_DIRECTION Direction of the movement (applies only for

M-Switch valve type)
wait int Flag indicating if function should wait until the

desired position is reached or not

Returns

fgt_ERROR_CODE enum Returned status of function execution.

28

5.2.22 fgt_set_allValves

fgt_ERROR_CODE fgt_set_allValves(unsigned int controllerIndex , unsigned

int moduleIndex , int position);

Set the position of all two positional valves connected to specified controller / module.

Parameters

valveIndex unsigned int Index of valve channel or unique ID
position int Desired valve position
direction int Direction of the movement (applies only for

M-Switch valve type)
wait int Flag indicating if function should wait until the

desired position is reached or not

Returns

fgt_ERROR_CODE enum Returned status of function execution.

Unit, calibration and limits

5.2.23 fgt_set_sessionPressureUnit

fgt_ERROR_CODE fgt_set_sessionPressureUnit(std:: string unit);

Set pressure unit for all initialized channels, default value is "mbar". If type is invalid an error is returned.
Every pressure read value and sent command will then use this unit.
Example of type: "mbar", "millibar", "kPa" ...

Parameters

unit std::string Unit string

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.24 fgt_set_pressureUnit

fgt_ERROR_CODE fgt_set_pressureUnit(unsigned int presureIndex , std:: string

unit);

Set pressure unit on selected pressure device, default value is "mbar". If type is invalid an error is returned.
Every pressure read value and sent command will then use this unit.
Example of type: "mbar", "millibar", "kPa" ...

Parameters

presureIndex unsigned int Index of pressure channel or unique ID
unit std::string Channel unit string

Returns

fgt_ERROR_CODE enum Returned status of function execution.

29

5.2.25 fgt_get_pressureUnit

fgt_ERROR_CODE fgt_get_pressureUnit(unsigned int presureIndex , std:: string

*unit);

Get used unit on selected pressure device, default value is "mbar". Every pressure read value and sent
command use this unit.

Parameter

presureIndex unsigned int Index of pressure channel or unique ID

Output

unit std::string Channel unit string

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.26 fgt_set_sensorUnit

fgt_ERROR_CODE fgt_set_sensorUnit(unsigned int sensorIndex , std:: string unit);

Set sensor unit on selected sensor device, default value is "µl/min" for flowrate sensors and "mbar" for
pressure sensors. If type is invalid an error is returned. Every sensor read value and regulation command will
then use this unit.
Example of type: "µl/h", "ulperDay", "microliter/hour" ...

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
unit std::string Channel unit string

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.27 fgt_get_sensorUnit

fgt_ERROR_CODE fgt_get_sensorUnit(unsigned int sensorIndex , std:: string *unit);

Get used unit on selected sensor device, default value is "µl/min" for flowunits and "mbar" for pressure
sensors. Every sensor read value and regulation command use this unit.

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID

Output

unit std::string Channel unit string

Returns

fgt_ERROR_CODE enum Returned status of function execution.

30

5.2.28 fgt_set_sensorCalibration

fgt_ERROR_CODE fgt_set_sensorCalibration(unsigned int sensorIndex ,

fgt_SENSOR_CALIBRATION calibration);

Set sensor internal calibration table. Function is only available for IPS (to set new reference value "zero") and
specific flowrate sensors (dual type) such as the flow-unit M accepting H2O and IPA

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
fgt_SENSOR_CALIBRATION enum Channel calibration table

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.29 fgt_get_sensorCalibration

fgt_ERROR_CODE fgt_get_sensorCalibration(unsigned int sensorIndex ,

fgt_SENSOR_CALIBRATION *calibration);

Get internal calibration table used by the sensor. Not supported by IPS.

Parameter

sensorIndex unsigned int Index of sensor channel or unique ID

Output

fgt_SENSOR_CALIBRATION enum Channel calibration table

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.30 fgt_set_sensorCustomScale

fgt_ERROR_CODE fgt_set_sensorCustomScale(unsigned int sensorIndex , float a,

float b, float c);

Apply a custom scale factor on sensor read value. This function is useful in order to adapt read sensor value
to physical measurement.
For example if a flow-unit is used with a special oil and it’s calibration table is set to H2O, read flowrate is not
correct. Scale factor is applied using following formula:

scaled_value = a ∗ sensor_value+ b ∗ sensor_value2 + c ∗ sensor_value3 (5.1)

.
Note that this scale is also used for the regulation. Not supported by IPS.

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
a float Proportional multiplier value
b float Square multiplier value
c float Cubic multiplier value

Returns

fgt_ERROR_CODE enum Returned status of function execution.

31

5.2.31 fgt_set_sensorCustomScaleEx

fgt_ERROR_CODE fgt_set_sensorCustomScaleEx(unsigned int sensorIndex , float a,

float b, float c, float SMax);

Apply a custom scale factor on flowrate sensor measurement. This function is useful in order to adapt read
sensor value to physical measurement. For example if a flow-unit is used with a special oil and it’s calibration
table is set to H2O, read flowrate is not correct. Scale factor is applied using following formula:

scaled_value = a ∗ sensor_value+ b ∗ sensor_value2 + c ∗ sensor_value3 (5.2)

When applying a custom scale factor, sensor range may increase very rapidly, SMax parameter is meant to
limit this maximal value. This function purpose is to be used with the regulation in order to avoid too high
maximum range on the sensor.

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
a float Proportional multiplier value
b float Square multiplier value
c float Cubic multiplier value
SMax float After scale maximal value (saturation)

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.32 fgt_calibratePressure

fgt_ERROR_CODE fgt_calibratePressure(unsigned int presureIndex);

Calibrate internal pressure sensor depending on atmospheric pressure. After calling this function 0 pressure
value corresponds to atmospheric pressure. During calibration step no pressure order is accepted. Total
duration vary from 3s to 8s.

Parameters

presureIndex unsigned int Index of pressure channel or unique ID

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.33 fgt_set_customSensorRegulation

fgt_ERROR_CODE fgt_set_customSensorRegulation(float measure , float setpoint ,

float maxSensorRange , unsigned int pressureIndex);

Start closed loop regulation between a sensor and a pressure controller. Pressure will be regulated in order to
reach sensor setpoint. Custom sensors, outside Fluigent ones, can be used such as different flow-units,
pressure, level... However we do not guarantee full compatibility with all sensors. Regulation quality is linked
to sensor precision and your set-up.
In order to use this function, custom used sensor maximum range and measured values has to be updated at
least once per second. Directly setting pressure on same pressureIndex will stop regulation. Not supported
by IPS.
This function must be called at 1Hz minimum or the regulation will stop.

32

Parameters

measure float Custom sensor measured value, no unit is re-
quired

setpoint float Custom sensor regulation goal value, no unit
is required

maxSensorRange float Custom sensor maximum range, no unit is
required

pressureIndex unsigned int Index of pressure channel or unique ID

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.34 fgt_get_pressureRange

fgt_ERROR_CODE fgt_get_pressureRange(unsigned int pressureIndex , float *Pmin ,

float *Pmax);

Get pressure controller minimum and maximum range. Returned values takes into account set unit, default
value is ’mbar’.

Parameter

pressureIndex unsigned int Index of pressure channel or unique ID

Output

Pmin float Minimum device pressure
Pmax float Maximum device pressure

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.35 fgt_get_sensorRange

fgt_ERROR_CODE fgt_get_sensorRange(unsigned int sensorIndex , float* Smin ,

float* Smax);

Get sensor minimum and maximum range. Returned values takes into account set unit, default value is
’µl/min’ in case of flow-units and ’mbar’ for pressure sensors.

Parameter

sensorIndex unsigned int Index of sensor channel or unique ID

Output

Smin float Minimum measured sensor value
Smax float Maximum measured sensor value

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.36 fgt_get_valveRange

33

fgt_ERROR_CODE fgt_get_valveRange(unsigned int valveIndex , int* posMax);

Get valve maximum position. Position indexing starts at 0.

Parameter

valveIndex unsigned int Index of valve channel or unique ID

Output

posMax int Maximum valve position

Returns

fgt_ERROR_CODE enum Returned status of function execution.

34

5.2.37 fgt_set_pressureLimit

fgt_ERROR_CODE fgt_set_pressureLimit(unsigned int pressureIndex , float PlimMin ,

float PlimMax);

Set pressure working range and ensure that pressure will never exceed this limit. It takes into account current
unit, default value is ’mbar’.

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
PlimMin float Minimum admissible device pressure
PlimMax float Maximum admissible device pressure

Returns

fgt_ERROR_CODE enum Returned status of function execution.

35

Regulation settings

5.2.38 fgt_set_sensorRegulationResponse

fgt_ERROR_CODE fgt_set_sensorRegulationResponse(unsigned int sensorIndex ,

unsigned int responseTime);

Set on a running regulation pressure response time. Minimal value is 2 for FlowEZ, 6 for MFCS controllers.
Not supported by IPS.

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
responseTime unsigned int Pressure response time in seconds

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.39 fgt_set_pressureResponse

fgt_ERROR_CODE fgt_set_pressureResponse(unsigned int sensorIndex , unsigned char

value);

Set pressure controller response. This function can be used to customise response time for your set-up.
For FlowEZ available values are 0: use of fast switch vales or 1: do not use fast switch vales. Default value is
0.
For MFCS available values are from 1 to 255. Higher the value, longer is the response time. Default value is
5.

Parameters

sensorIndex unsigned int Index of sensor channel or unique ID
value unsigned char Desired pressure controller response time,

this depends on controller type

Returns

fgt_ERROR_CODE enum Returned status of function execution.

36

Status information

5.2.40 fgt_get_pressureStatus

fgt_ERROR_CODE fgt_get_pressureStatus(unsigned int pressureIndex ,

fgt_INSTRUMENT_TYPE *type , unsigned short *controllerSN , unsigned char

*infoCode , std:: string *detail);

Get detailed information of pressure channel status. This function is meant to be invoked after calling a
pressure related function which returns an error code.
Retrieved information of last error contains controller position and a string detail.

Parameter

pressureIndex unsigned int Index of pressure channel or unique ID

Output

type fgt_INSTRUMENT_TYPE Controller type
controllerSN unsigned short Serial number of controller (such as Link,

MFCS)
infoCode unsigned char Information status code, 1 if pressure module

is controller locally
detail std::string Detailed string about the error or state

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.41 fgt_get_sensorStatus

fgt_ERROR_CODE fgt_get_sensorStatus(unsigned int sensorIndex ,

fgt_INSTRUMENT_TYPE* type , unsigned short* controllerSN , unsigned char*

infoCode , std:: string* detail);

Get detailed information of sensor status. This function is ment to be invoked after calling a sensor related
function which returns an error code.
Retrieved information of last error contains sensor position and a string detail.

Parameter

sensorIndex unsigned int Index of sensor channel or unique ID

Output

type fgt_INSTRUMENT_TYPE Controller type
controllerSN unsigned short Serial number of controller (such as Link,

Flowboard)
infoCode unsigned char Information status code about regulation

See infoCode for more details
detail std::string Detailed string about the error or state

Returns

fgt_ERROR_CODE enum Returned status of function execution.

37

5.2.42 fgt_set_power

fgt_ERROR_CODE fgt_set_power(unsigned short controllerIndex , fgt_POWER

powerState);

Set power ON or OFF on a controller (such as Link, MFCS, Flowboard).
Not all controllers support this functionality.

Parameter

controllerIndex unsigned int Index of controller or unique ID
powerState fgt_POWER Power mode to set.

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.43 fgt_get_power

fgt_ERROR_CODE fgt_get_power(unsigned short controllerIndex , fgt_POWER

*powerState);

Get power information about a controller (such as Link, MFCS, Flowboard).
Not all controllers support this functionality.

Paramete

controllerIndex unsigned int Index of controller or unique ID

Output

powerState fgt_POWER Power mode of the device.

Returns

fgt_ERROR_CODE enum Returned status of function execution.

38

TTL functions

5.2.44 fgt_set_TtlMode

fgt_ERROR_CODE fgt_set_TtlMode(unsigned int TtlIndex , fgt_TTL_MODE mode);

Configure a specific TTL port (BNC ports) as input, output, rising or falling edge.

Parameters

TtlIndex unsigned int TtlIndex Index of TTL port or unique ID
mode fgt_TTL_MODE TTL mode to set.

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.45 fgt_read_Ttl

fgt_ERROR_CODE fgt_read_Ttl(unsigned int TtlIndex , unsigned int *state);

Configure a specific TTL port (BNC ports) as input, output, rising or falling edge.

Parameter

TtlIndex unsigned int TtlIndex Index of TTL port or unique ID

Output

state unsigned int 0: no edge was detected; 1: an edge is de-
tected

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.46 fgt_trigger_Ttl

fgt_ERROR_CODE fgt_trigger_Ttl(unsigned int TtlIndex);

Trigger a specific TTL port (BNC ports) if set as output.

Parameter

TtlIndex unsigned int TtlIndex Index of TTL port or unique ID

Returns

fgt_ERROR_CODE enum Returned status of function execution.

39

Specific functions

5.2.47 fgt_set_purge

fgt_ERROR_CODE fgt_set_purge(unsigned short controllerIndex , unsigned char

purge);

Activate/deactivate purge function.
This feature is only available on MFCS devices equipped with special valve.

Parameters

controllerIndex unsigned int Index of controller or unique ID
purge unsigned char 0: OFF, 1:ON

Returns

fgt_ERROR_CODE enum Returned status of function execution.

5.2.48 fgt_set_manual

fgt_ERROR_CODE fgt_set_manual(unsigned int pressureIndex , float value);

Manually activate internal electrovalve. This stops pressure regulation.
This feature is only available on MFCS and MFCS-EZ devices.

Parameters

pressureIndex unsigned int Index of pressure channel or unique ID
value float applied valve voltage from 0 to 100(

Returns

fgt_ERROR_CODE enum Returned status of function execution.

40

5.3 Type equivalence

The following table presents the types various programming languages which are equivalent to the types
used by the shared library functions, for the purposes of interoperability. If you use the middleware, these
conversions are already taken care of.

Bits C++ C# Python LabVIEW MATLAB

32 long int int c_ulong I32 Int32

64 unsigned long long ulong c_ulonglong U64 Uint64

pointer to unsigned
short

ushort by ref byref(c_ushort) pointer U16 Uint16Ptr

8 unsigned char byte c_ubyte U8 Uint8

pointer to unsigned
char

byte by ref byref(c_ubyte) U8 Uint8Ptr

32 float float c_float SGL float

16 unsigned short ushort c_ushort U16 Int16

char[] byte[] Array(c_uchar *) pointer to ar-
ray of U8

Uint8[]

41

6 | Examples

Multiple examples are provided with the middleware. We made them as much as possible, easily available
in each IDE. Examples goes from basic use to more advanced features. We first recommend to get working
basic examples before going on to more advanced ones.

6.1 Basic Read Sensor Data

This example shows how to retrieve a data from the sensor channel

Hardware setup: One or more connected devices with sensor channel(s) or standalone sensor device(s).

Pseudo-code Wrapper call

1. Initialize session fgt_init
2. Get total number of initialized sensor channel(s) fgt_get_sensorChannelCount
3. Get information about the connected sensor channel(s) fgt_get_sensorChannelsInfo
5. Retrieve sensor(s) unit fgt_get_sensorUnit
6. Get sensor(s) range fgt_get_sensorRange
7. Read sensor(s) data in loop fgt_get_sensorValue
7. Close session fgt_close

6.2 Basic Set Pressure

This example shows how to set a pressure order and generate a ramp on the first pressure module of the
chain.

Required hardware: - at least one Fluigent pressure controller (MFCS, MFCS-EZ or FlowEZ)

Pseudo-code Wrapper call

1. Initialize session fgt_init
2. Set pressure fgt_set_pressure
3. Wait 5 seconds letting pressure to establish
4. Read and display pressure fgt_get_pressure
5. Get pressure controller range fgt_get_pressureRange
6. Send a pressure ramp profile and read value fgt_set_pressure

fgt_get_pressure
7. Close Fluigent SDK session fgt_close

42

6.3 Basic Sensor Regulation

This example shows how to set a sensor regulation and generate a sinusoidal profile on the first sensor
and pressure module of the chain
Required hardware: -at least one Fluigent pressure controller (MFCS, MFCS-EZ or FlowEZ) and at least one
Fluigent sensor (flow-unit connected to FRP or FlowEZ)

Pseudo-code Wrapper call

1. Initialize session fgt_init
2. Get first initialized sensor range for future command fgt_get_sensorRange
3. Read sensor value fgt_get_sensorValue
4. Start sensor regulation using first initialized pressure controller.
Setpoint is to to 10% of sensor range.

fgt_set_sensorRegulation

5. Wait 5 seconds letting regulation to reach setpoint
6. Read and display sensor value fgt_get_sensorValue
7. Regulate flow-rate in form of a sinusoidal wave.
Loop every 1 second and read sensor value

fgt_set_sensorRegulation
fgt_get_sensorValue

8. Send a pressure command stopping running regulation fgt_set_pressure
7. Close Fluigent SDK session

6.4 Basic Set Valve Position

This example shows how to change the position of a valve.

Hardware setup: at least one Fluigent valve (M-Switch, L-Switch, 2-Switch or P-Switch)

Pseudo-code Wrapper call

1. Initialize session fgt_init
2. Get the number of valves Fgt_get_valveChannelCount
3. For each valve:
4. Get the maximum reachable position fgt_get_valveRange
5. Set the valve to each position fgt_set_valvePosition
6. Read back the valve position fgt_get_valvePosition
7. Close Fluigent SDK session fgt_close

6.5 Basic Get Instruments Info

The example shows how to retrieve information about Fluigent instruments: type, controller, serial number
and unique ID.
Aim is to retrieve total number of channels and controllers then get their detailed information. This also shows
how to use structures such as fgt_CHANNEL_INFO.

6.6 Advanced Specific Multiple Instruments

The example shows how to use specific channels ID and multiple connected instruments.
fgt_initEx function can be used in order to initialize specific instruments in a defined order.
Unique ID is used to address specific pressure channels. Both index (stating at 0) and unique ID can be used
as function parameter.

43

6.7 Advanced Parallel Pressure Control

The example shows how to send concurrent pressure orders using threads. Dll handle parallel calls, func-
tions can be called simultaneous. This demonstrate thread handling, same result is obtained using successive
calls as al functions call is executed instantly (within few µs).

6.8 Advanced Features

The example shows advanced features such as limits, units and calibration features.

6.9 Advanced Custom Sensor Regulation

The example shows how to use a custom sensor, different from Fluigent ones and regulate pressure in
order to reach setpoint. Different sensor type and range can be used (e.g. liquid pressure, water level, l/min
flow meter...) however we do not guarantee full compatibility with all sensors.
For the demonstration a Fluigent flow-unit is used for more simplicity.

44

FLUIGENT

O’kabé bureaux

55-77, avenue de Fontainebleau 94270

Le Kremlin-Bicêtre

FRANCE

Phone: +331 77 01 82 68

Fax: +331 77 01 82 70

www.fluigent.com

Technical support:

support@fluigent.com

Phone : +331 77 01 82 65

General information:

contact@fluigent.com

www.fluigent.com
mailto:support@fluigent.com
mailto:contact@fluigent.com

	1 Introduction to Fluigent SDK
	2 Requirements
	2.1 System requirements
	2.2 Supported instruments

	3 SDK general philosophy
	3.1 Channels
	3.1.1 Unique ID
	3.1.2 Channel information
	3.1.3 Advanced features

	3.2 Controllers
	3.3 Regulation
	3.3.1 Custom sensor regulation

	3.4 Status management

	4 Software layers
	4.1 Fluigent SDK native shared libraries
	4.2 Middleware
	4.3 Installation
	4.3.1 C++
	4.3.2 C#
	4.3.3 Python
	4.3.4 LabVIEW
	4.3.5 MATLAB

	5 Fluigent SDK Functions
	5.1 Types definition
	5.2 SDK Wrapper
	5.2.1 fgt_init
	5.2.2 fgt_close
	5.2.3 fgt_detect
	5.2.4 fgt_initEx
	5.2.5 fgt_get_controllersInfo
	5.2.6 fgt_get_pressureChannelCount
	5.2.7 fgt_get_sensorChannelCount
	5.2.8 fgt_get_TtlChannelCount
	5.2.9 fgt_get_valveChannelCount
	5.2.10 fgt_get_pressureChannelsInfo
	5.2.11 fgt_get_sensorChannelsInfo
	5.2.12 fgt_get_TtlChannelsInfo
	5.2.13 fgt_get_valveChannelsInfo
	5.2.14 fgt_set_pressure
	5.2.15 fgt_get_pressure
	5.2.16 fgt_get_pressureEx
	5.2.17 fgt_set_sensorRegulation
	5.2.18 fgt_get_sensorValue
	5.2.19 fgt_get_sensorValueEx
	5.2.20 fgt_get_valvePosition
	5.2.21 fgt_set_valvePosition
	5.2.22 fgt_set_allValves
	5.2.23 fgt_set_sessionPressureUnit
	5.2.24 fgt_set_pressureUnit
	5.2.25 fgt_get_pressureUnit
	5.2.26 fgt_set_sensorUnit
	5.2.27 fgt_get_sensorUnit
	5.2.28 fgt_set_sensorCalibration
	5.2.29 fgt_get_sensorCalibration
	5.2.30 fgt_set_sensorCustomScale
	5.2.31 fgt_set_sensorCustomScaleEx
	5.2.32 fgt_calibratePressure
	5.2.33 fgt_set_customSensorRegulation
	5.2.34 fgt_get_pressureRange
	5.2.35 fgt_get_sensorRange
	5.2.36 fgt_get_valveRange
	5.2.37 fgt_set_pressureLimit
	5.2.38 fgt_set_sensorRegulationResponse
	5.2.39 fgt_set_pressureResponse
	5.2.40 fgt_get_pressureStatus
	5.2.41 fgt_get_sensorStatus
	5.2.42 fgt_set_power
	5.2.43 fgt_get_power
	5.2.44 fgt_set_TtlMode
	5.2.45 fgt_read_Ttl
	5.2.46 fgt_trigger_Ttl
	5.2.47 fgt_set_purge
	5.2.48 fgt_set_manual

	5.3 Type equivalence

	6 Examples
	6.1 Basic Read Sensor Data
	6.2 Basic Set Pressure
	6.3 Basic Sensor Regulation
	6.4 Basic Set Valve Position
	6.5 Basic Get Instruments Info
	6.6 Advanced Specific Multiple Instruments
	6.7 Advanced Parallel Pressure Control
	6.8 Advanced Features
	6.9 Advanced Custom Sensor Regulation

