Uses minimum bench space
Microfluidic reservoir block heater
[E-RESHEAT01]Compact digital block heater
Heat fluid reservoirs during your microfluidic experiment
The block heater is a heating dry bath incubator that sets the temperature between ambient +2°C ~ 100°C. The temperature controller device comes with different blocks to fit two reservoir sizes: one half-block with six 15 mL reservoir inserts, and one quarter-block with six 1.5 mL reservoir inserts. A heat insulator block and a plastic lid are also included.
- Compact
- Intuitive
Easy to use
- Versatile
Compatible with various reservoir sizes
Features of the block heater
Compact
The dry digital block heater for lab tube temperature control is a small device (18.5 cm square) that is easy to place on a laboratory bench. The surface loss is minimized.
Versatility
The reservoir heater is sent with 2 blocks to make it compatible with reservoirs of 1.5 and 15mL, which allows for maximum tube size versatility.
Precise and fast heating
The temperature control is precise and reaches the desired values in an average of 16 minutes.
Easy to use
Connect your reservoirs to your pressure-based flow controller and place them on the temperature controller, in the compatible insert.
Why is it important to control the temperature in a microfluidic system?
Temperature control is a critical aspect of microfluidic systems because it can significantly affect the behavior and performance of the system. Here are a few reasons why temperature control using a reservoir block heater is important for microfluidic systems:
1. Cellular viability
Human cells grow in-vivo in specific conditions, and any slight modification of the environment may affect the cellular viability and their ability to grow and fulfill their functions. In particular, temperature changes have dramatic effects on cellular viability, hence the necessity to accurately control the temperature in a microfluidic cell culture.
2. Reaction kinetics
Many microfluidic systems involve chemical reactions or biochemical processes that are temperature-dependent. For example, enzymes used in many biological assays are highly sensitive to temperature, and slight changes in temperature can affect their activity and specificity. Therefore, precise temperature control is essential to ensure the accuracy and reproducibility of such reactions.
3. Fluid properties
The viscosity and surface tension of fluids used in microfluidic systems can be highly dependent on temperature. This can affect the flow rate, mixing, and separation of fluids in microchannels, which can ultimately impact the performance of the system.
4. Biomolecular interactions
Biomolecular interactions such as binding and folding of proteins can also be affected by temperature. For example, thermal denaturation can lead to loss of biological activity or structural changes in proteins, which can significantly impact the outcome of experiments or assays.
5. Thermal management
In microfluidic systems, heat dissipation can be a challenge due to the high surface-to-volume ratio of microchannels. Accurate temperature control is therefore essential to avoid thermal gradients that can affect the performance of the system and lead to inconsistent results.
Overall, temperature control is critical for achieving accurate and reproducible results in microfluidic systems, particularly for applications involving biological or chemical reactions. The block heater helps scientists overcome this issue by constantly controlling the temperature inside the reservoirs.
How to use the block heater in combination with Fluigent flow controllers
The block heater, in combination with Fluigent microfluidic flow controllers and reservoir caps,allows the precise control of the fluid’s temperature while circulating it through a microfluidic channel to perform different types of experiments (cell study under controller biochemical environment, production of hydrogel droplets, etc). Simply place the pressurized tube inside the block heater within the appropriate reservoir insert, and apply pressure to the tube.
Figure 1: A 15 mL tube pressurized by a FlowEz flow pump while heated by the temperature controller
Specifications of the block heater
Temperature range | Ambient +2°C to +100°C |
Display accuracy | 0.1 |
Temperature accuracy at 37°C | ±0.5°C |
Operation ambient temperature | +8°C to +40°C |
Heating rate | 16 min-1 |
Dimensions | 185x185x25mm |
Weight | < 1 kg |
Tube size compatibility | 1.5 mL ; 15 mL |